Cambridge

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

MAXIMUM MARK: 60

Mark scheme abbreviations
; separates marking points
I alternative answers for the same point
\mathbf{R} reject

A accept (for answers correctly cued by the question, or by extra guidance)
AW alternative wording (where responses vary more than usual)

underline	
maxtual word given must be used by candidate (grammatical variants excepted)	
ora	indicates the maximum number of marks that can be given
mp	or reverse argument
ecf	marking point (with relevant number)
I	error carried forward
AVP	ignore
	Alternative valid point (examples given as guidance)

1 (a) fewer electrons in Cl_{2} than in Br_{2} ora (1)
weaker van der Waals' forces in Cl_{2} or stronger van der Waals' forces in Br_{2} (1)
(b) CO has a permanent dipole or N_{2} does not (1)
permanent dipole-permanent dipole interactions are stronger than those from induced dipoles 1)
(c) a co-ordinate bond (1)

a covalent bond (1)

or

- c
 $\underset{\times}{\times}$
a lone pair (1)
- c $\quad \stackrel{\stackrel{x}{x}}{\stackrel{x}{x}} 00 \quad\left(\begin{array}{l}x \\ \times \\ x\end{array}\right.$
or

penalise any groups of 3 or 4 electrons that are circled
(d) CO and HCN both have a dipole or N_{2} does not have a dipole
(e) (i)

$\mathrm{C} \equiv \mathrm{N}$ must be shown
(ii) nucleophilic addition
(iii)

$\mathrm{C}=\mathrm{O}$ dipole correctly shown or correct curly arrow on $\mathrm{C}=\mathrm{O}$ (1)
attack on $\mathrm{C}^{\delta+}$ by C of CN^{-}(1)
correct intermediate (1)
CN^{-}regenerated (1)
[Total: 13]

2 (a) (i) new graph has lower maximum and maximum is to the right of previous maximum
(ii) H is at $E_{\mathrm{a}}(1)$
(b) the minimum amount of energy molecules must have or energy required (1) in order for the reaction to take place (1)
(c) (i) iron or iron oxide

100 to 500 atm and $400-550^{\circ} \mathrm{C}$
units necessary - allow other correct values and units
(ii) C is placed to the left of H
(iii) more molecules now have energy $>E_{a}$
(d) (i) reaction 1
has greater E_{a} (1)
because energy is needed to break covalent bonds (1)
reaction 2
has lower E_{a} (only valid if converse not awarded for reaction 1)
or actual reaction is $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
or reaction involves ions (1)
opposite charges attract (1)
(ii) alkaline aqueous iodine (1)
yellow ppt (1)
[Total: 13]

3 (a) Accept only symbols.
(i) K or K^{+}
(ii) Na - allow K or Li
(iii) Cl or Br
(iv) Mg or Ca or Li
(b) Accept only formulae.
(i) $\mathrm{F}_{2} \mathrm{O}$
(ii) SO_{2} and SO_{3} or $\mathrm{P}_{2} \mathrm{O}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ and $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{P}_{4} \mathrm{O}_{10}$ or any two from $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$ or any two from $\mathrm{Cl}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{ClO}_{3}, \mathrm{Cl}_{2} \mathrm{O}_{7}(1+1)$
(iii) SiO_{2} or $\mathrm{Al}_{2} \mathrm{O}_{3}$ or MgO
(iv) giant structure (1)
strong covalent bonds (1)
(c) (i) octahedral
(ii) I atom is larger than Cl atom (1)
cannot pack 7 F atoms around Cl atom or can pack 7 F atoms around I atom (1)

4 (a)

1 for each correct structure (7×1)
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(ii) inductive effect of alkyl groups (1) stabilises secondary carbocation cf primary (1)

5 (a) (i) same molecular formula but different structural formula/structure
(ii) asymmetric C atom/chiral centre present (1) $>C=C$ bond present (1)
(b) (i) no because there is no chiral carbon atom present
(ii)

(c) $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{35.8}{12}: \frac{4.5}{1}: \frac{59.7}{16}$ this mark is for correct use of A_{r} values (1)
$\mathrm{C}: \mathrm{H}: \mathrm{O}=2.98: 4.5: 3.73$
$\mathrm{C}: \mathrm{H}: \mathrm{O}=1: 1.5: 1.25$ this mark is for evidence of correct calculation (1) gives empirical formula of \mathbf{W} is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$
(d) $n\left(\mathrm{OH}^{-}\right)=1.00 \times 29.4 / 1000=0.0294(1)$
$n(\mathbf{W})=\frac{1.97}{134}=0.0147(1)$
no. of $-\mathrm{CO}_{2} \mathrm{H}$ groups present
in one molecule of $\mathbf{W}=\frac{0.0294}{0.0147}=2(1)$

BLANK PAGE

